Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Switchgrass (Panicum virgatumL.) is a prominent bioenergy crop with robust resilience to environmental stresses. However, our knowledge regarding how precipitation changes affect switchgrass photosynthesis and its responses to light and CO2remains limited. To address this knowledge gap, we conducted a field precipitation experiment with five different treatments, including −50%, −33%, 0%, +33%, and +50% of ambient precipitation. To determine the responses of leaf photosynthesis to CO2concentration and light, we measured leaf net photosynthesis of switchgrass under different CO2concentrations and light levels in 2020 and 2021 for each of the five precipitation treatments. We first evaluated four light and CO2response models (i.e., rectangular hyperbola model, nonrectangular hyperbola model, exponential model, and the modified rectangular hyperbola model) using the measurements in the ambient precipitation treatment. Based on the fitting criteria, we selected the nonrectangular hyperbola model as the optimal model and applied it to all precipitation treatments, and estimated model parameters. Overall, the model fit field measurements well for the light and CO2response curves. Precipitation change did not influence the maximum net photosynthetic rate (Pmax) but influenced other model parameters including quantum yield (α), convexity (θ), dark respiration (Rd), light compensation point (LCP), and saturated light point (LSP). Specifically, the meanPmaxof five precipitation treatments was 17.6 μmol CO2m−2 s−1, and the ambient treatment tended to have a higherPmax. The +33% treatment had the highestα, and the ambient treatment had lowerθandLCP, higherRd, and relatively lowerLSP. Furthermore, precipitation significantly influenced all model parameters of CO2response. The ambient treatment had the highestPmax, largestα, and lowestθ,Rd, and CO2compensation pointLCP. Overall, this study improved our understanding of how switchgrass leaf photosynthesis responds to diverse environmental factors, providing valuable insights for accurately modeling switchgrass ecophysiology and productivity.more » « less
- 
            Long, Steve. (Ed.)Switchgrass (Panicum virgatum L.) is a prominent bioenergy crop with robust resilience to environmental stresses. However, our knowledge regarding how precipitation changes affect switchgrass photosynthesis and its responses to light and CO2 remains limited. To address this knowledge gap, we conducted a field precipitation experiment with five different treatments, including -50%, -33%, 0%, +33%, and +50% of ambient precipitation. To determine the responses of leaf photosynthesis to CO2 concentration and light, we measured leaf net photosynthesis of switchgrass under different CO2 concentrations and light levels in 2020 and 2021 for each of the five precipitation treatments. We first evaluated four light and CO2 response models (i.e., rectangular hyperbola model, nonrectangular hyperbola model, exponential model, and the modified rectangular hyperbola model) using the measurements in the ambient precipitation treatment. Based on the fitting criteria, we selected the nonrectangular hyperbola model as the optimal model and applied it to all precipitation treatments, and estimated model parameters. Overall, the model fit field measurements well for the light and CO2 response curves. Precipitation change did not influence the maximum net photosynthetic rate (Pmax) but influenced other model parameters including quantum yield (α), convexity (θ), dark respiration (Rd), light compensation point (LCP), and saturated light point (LSP). Specifically, the mean Pmax of five precipitation treatments was 17.6 μmol CO2 m-2s-1, and the ambient treatment tended to have a higher Pmax. The +33% treatment had the highest α, and the ambient treatment had lower θ and LCP, higher Rd, and relatively lower LSP. Furthermore, precipitation significantly influenced all model parameters of CO2 response. The ambient treatment had the highest Pmax, largest α, and lowest θ, Rd, and CO2 compensation point LCP. Overall, this study improved our understanding of how switchgrass leaf photosynthesis responds to diverse environmental factors, providing valuable insights for accurately modeling switchgrass ecophysiology and productivity.more » « less
- 
            Switchgrass (SG) is considered a model bioenergy crop and a warm- season peren-nial grass (WSPG) that traditionally served as forage feedstock in the United States. To avoid the sole dependence on SG for bioenergy production, evaluation of other crops to diversify the pool of feedstock is needed. We conducted a 3- year field ex-periment evaluating eastern gamagrass (GG), another WSPG, as complementary feedstock to SG in one- and two- cut systems, with or without intercropping with crimson clover or hairy vetch, and under different nitrogen (N) application rates. Our results showed that GG generally produced lower biomass (by 29.5%), theoreti-cal ethanol potential (TEP, by 2.8%), and theoretical ethanol yield (TEY, by 32.9%) than corresponding SG under the same conditions. However, forage quality meas-ures, namely acid detergent fiber (ADF), crude protein (CP), and elements P, K, Ca, and Mg were significantly higher in GG than those in SG. Nitrogen fertilizer signifi-cantly enhanced biomass (by 1.54 Mg ha−1), lignin content (by 2.10 g kg−1), and TEY (787.12 L ha−1) in the WSPGs compared to unfertilized treatments. Intercropping with crimson clover or hairy vetch did not significantly increase biomass of the WSPGs, or TEP and TEY in unfertilized plots. This study demonstrated that GG can serve as a complementary crop to SG and could be used as a dual- purpose crop for bioenergy and forage feedstock in farmers' rotations.more » « less
- 
            Wireless Underground Sensor Networks (WUSNs) that collect geospatial in situ sensor data are a backbone of internet-of-things (IoT) applications for agriculture and terrestrial ecology. In this paper, we first show how WUSNs can operate reliably under field conditions year-round and at the same time be used for determining and mapping soil conditions from the buried sensor nodes. We demonstrate the design and deployment of a 23-node WUSN installed at an agricultural field site that covers an area with a 530 m radius. The WUSN has continuously operated since September 2019, enabling real-time monitoring of soil volumetric water content (VWC), soil temperature (ST), and soil electrical conductivity. Secondly, we present data collected over a nine-month period across three seasons. We evaluate the performance of a deep learning algorithm in predicting soil VWC using various combinations of the received signal strength (RSSI) from each buried wireless node, above-ground pathloss, the distance between wireless node and receive antenna (D), ST, air temperature (AT), relative humidity (RH), and precipitation as input parameters to the model. The AT, RH, and precipitation were obtained from a nearby weather station. We find that a model with RSSI, D, AT, ST, and RH as inputs was able to predict soil VWC with an R2 of 0.82 for test datasets, with a Root Mean Square Error of ±0.012 (m3/m3). Hence, a combination of deep learning and other easily available soil and climatic parameters can be a viable candidate for replacing expensive soil VWC sensors in WUSNs.more » « less
- 
            na (Ed.)Environmental observation networks, such as AmeriFlux, are foundational for monitoring ecosystem response to climate change, management practices, and natural disturbances; however, their effectiveness depends on their representativeness for the regions or continents. We proposed an empirical, time series approach to quantify the similarity of ecosystem fluxes across AmeriFlux sites. We extracted the diel and seasonal characteristics (i.e., amplitudes, phases) from carbon dioxide, water vapor, energy, and momentum fluxes, which reflect the effects of climate, plant phenology, and ecophysiology on the observations, and explored the potential aggregations of AmeriFlux sites through hierarchical clustering. While net radiation and temperature showed latitudinal clustering as expected, flux variables revealed a more uneven clustering with many small (number of sites < 5), unique groups and a few large (> 100) to intermediate (15–70) groups, highlighting the significant ecological regulations of ecosystem fluxes. Many identified unique groups were from under-sampled ecoregions and biome types of the International Geosphere-Biosphere Programme (IGBP), with distinct flux dynamics compared to the rest of the network. At the finer spatial scale, local topography, disturbance, management, edaphic, and hydrological regimes further enlarge the difference in flux dynamics within the groups. Nonetheless, our clustering approach is a data-driven method to interpret the AmeriFlux network, informing future cross-site syntheses, upscaling, and model-data benchmarking research. Finally, we highlighted the unique and underrepresented sites in the AmeriFlux network, which were found mainly in Hawaii and Latin America, mountains, and at under- sampled IGBP types (e.g., urban, open water), motivating the incorporation of new/unregistered sites from these groups.more » « lessFree, publicly-accessible full text available September 1, 2026
- 
            Abstract. Mapping in situ eddy covariance measurements of terrestrial land–atmosphere fluxes to the globe is a key method for diagnosing the Earth system from a data-driven perspective. We describe the first global products (called X-BASE) from a newly implemented upscaling framework, FLUXCOM-X, representing an advancement from the previous generation of FLUXCOM products in terms of flexibility and technical capabilities. The X-BASE products are comprised of estimates of CO2 net ecosystem exchange (NEE), gross primary productivity (GPP), evapotranspiration (ET), and for the first time a novel, fully data-driven global transpiration product (ETT), at high spatial (0.05°) and temporal (hourly) resolution. X-BASE estimates the global NEE at −5.75 ± 0.33 Pg C yr−1 for the period 2001–2020, showing a much higher consistency with independent atmospheric carbon cycle constraints compared to the previous versions of FLUXCOM. The improvement of global NEE was likely only possible thanks to the international effort to increase the precision and consistency of eddy covariance collection and processing pipelines, as well as to the extension of the measurements to more site years resulting in a wider coverage of bioclimatic conditions. However, X-BASE global net ecosystem exchange shows a very low interannual variability, which is common to state-of-the-art data-driven flux products and remains a scientific challenge. With 125 ± 2.1 Pg C yr−1 for the same period, X-BASE GPP is slightly higher than previous FLUXCOM estimates, mostly in temperate and boreal areas. X-BASE evapotranspiration amounts to 74.7×103 ± 0.9×103 km3 globally for the years 2001–2020 but exceeds precipitation in many dry areas, likely indicating overestimation in these regions. On average 57 % of evapotranspiration is estimated to be transpiration, in good agreement with isotope-based approaches, but higher than estimates from many land surface models. Despite considerable improvements to the previous upscaling products, many further opportunities for development exist. Pathways of exploration include methodological choices in the selection and processing of eddy covariance and satellite observations, their ingestion into the framework, and the configuration of machine learning methods. For this, the new FLUXCOM-X framework was specifically designed to have the necessary flexibility to experiment, diagnose, and converge to more accurate global flux estimates.more » « less
- 
            null (Ed.)Large stocks of soil organic carbon (SOC) have accumulated in the Northern Hemisphere permafrost region, but their current amounts and future fate remain uncertain. By analyzing dataset combining >2700 soil profiles with environmental variables in a geospatial framework, we generated spatially explicit estimates of permafrost-region SOC stocks, quantified spatial heterogeneity, and identified key environmental predictors. We estimated that 1014 − 175 + 194 Pg C are stored in the top 3 m of permafrost region soils. The greatest uncertainties occurred in circumpolar toe-slope positions and in flat areas of the Tibetan region. We found that soil wetness index and elevation are the dominant topographic controllers and surface air temperature (circumpolar region) and precipitation (Tibetan region) are significant climatic controllers of SOC stocks. Our results provide first high-resolution geospatial assessment of permafrost region SOC stocks and their relationships with environmental factors, which are crucial for modeling the response of permafrost affected soils to changing climate.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available